Research article    |    Open Access
International Journal of the Pursuit of Excellence in Interdisciplinary 2025, Vol. 5(1) 58-77

GeoAI Destekli Turizm: Çıkarımlar

Abdullah Ülkü, Nilay Lobut

pp. 58 - 77

Publish Date: June 30, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

Bu çalışma, Coğrafi Yapay Zekâ (GeoAI) teknolojilerinin turizm sektöründeki çok boyutlu uygulama alanlarını sistematik biçimde incelemeyi amaçlamaktadır. Dijitalleşme ile birlikte mekânsal verilerin artışı, klasik analiz yöntemlerinin yetersiz kalmasına neden olmuş; bu durum, mekânsal verilerin anlamlandırılmasında GeoAI tabanlı yaklaşımların önemini artırmıştır. Bu bağlamda, çalışma PRISMA protokolüne dayalı yarı-sistematik bir literatür taraması yöntemiyle yürütülmüş ve 2015–2024 yılları arasında yayımlanan 60 akademik yayın tematik analiz yoluyla değerlendirilmiştir. Analizler sonucunda, GeoAI’nin turizm alanındaki katkıları on iki tematik başlık altında sınıflandırılmıştır: artırılmış gerçeklik ve akıllı haritalar, sosyal medya analitiği, kişiselleştirilmiş rota planlaması, ziyaretçi yoğunluk haritaları, dinamik yönlendirme sistemleri, sürdürülebilirlik, afet yönetimi, genetik algoritmalar, zaman-maliyet-tercih modelleri, tarım ve kültürel miras, film turizmi ve ekonomik etkiler. Elde edilen bulgular, GeoAI’nin yalnızca bireysel kullanıcı deneyimini geliştirmekle kalmadığını; aynı zamanda destinasyon yönetimi, sürdürülebilirlik, kriz müdahalesi ve veri temelli karar alma süreçlerine stratejik katkılar sunduğunu ortaya koymaktadır. Bu kapsamda çalışma, GeoAI’nin turizm sektörüyle bütünleşmesine yönelik kavramsal ve uygulamalı bir çerçeve sunmaktadır.

Keywords: GeoAI, Turizm, Coğrafi Bilgi Sistemleri


How to Cite this Article?

APA 7th edition
Ulku, A., & Lobut, N. (2025). GeoAI Destekli Turizm: Çıkarımlar. International Journal of the Pursuit of Excellence in Interdisciplinary, 5(1), 58-77.

Harvard
Ulku, A. and Lobut, N. (2025). GeoAI Destekli Turizm: Çıkarımlar. International Journal of the Pursuit of Excellence in Interdisciplinary, 5(1), pp. 58-77.

Chicago 16th edition
Ulku, Abdullah and Nilay Lobut (2025). "GeoAI Destekli Turizm: Çıkarımlar". International Journal of the Pursuit of Excellence in Interdisciplinary 5 (1):58-77.

References

    Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

    Caldeira, A. M., & Kastenholz, E. (2018). Tourists’ spatial behaviour in urban destinations: The effect of prior destination experience. Journal of Vacation Marketing, 24(3), 247–260. https://doi.org/10.1177/1356766717706102

    Cao, S. (2021). An optimal round-trip route planning method for tourism based on improved genetic algorithm. PubMed Central (Pmc) Computational Intelligence and Neuroscience, 2022, Article ID 7665874. https://doi.org/10.1155/2022/7665874

    Chen, J., Becken, S., & Stantic, B. (2022). Harnessing social media to understand tourist travel patterns in multi-destinations. Annals Of Tourism Research Empirical Insights, 3(2), 100079. https://doi.org/10.1016/j.annale.2022.10007

    Chang, Y., & Xie, Y. (2020). Spatial intelligence for economic optimization in tourism. International Journal of Geospatial Economics, 7(1), 78–92.

    Chen, W., Luo, M., & Xie, L. (2021). Smart technologies for sustainability in tourism destinations. Tourism Sustainability Journal, 3(2), 45–63.

    Cecchini, A., Cappiello, C., & Pinna, R. (2020). IoT for sustainable tourism: A case study in Amsterdam. Sustainable Tourism Review, 4(1), 1–16.

    Chen, F., Luo, Y., & Xie, Z. (2021). GeoAI applications in sustainable tourism management under climate change. Sustainable Development Studies, 13(2), 102–114.

    Duke University. (2024). GeoAI for marine ecosystem monitoring. Duke Scholars. Retrieved May 8, 2025, from https://scholars.duke.edu/individual/pub1588603

    ESRI. (n.d.). GeoAI'nin çevresel izleme ve doğal kaynak yönetimindeki rolü. ESRI Türkiye. Retrieved May 8, 2025, from https://www.esri.com.tr/tr-tr/yetenekler/geoai/genel-bakis

    Gao, M., Zhang, H., & Sun, Y. (2023). GeoAI-driven tourist flow management in ecologically sensitive areas. Tourism Geographies, 25(2), 356–371. https://doi.org/10.1080/14616688.2023.2181234

    Gao, S., Li, W., & Zhou, X. (2023). GeoAI-driven spending behavior analysis for urban tourism. Tourism Intelligence Quarterly, 9(1), 23–40. https://www.tiqjournal.org/article/geoai-driven-spending-behavior-analysis

    Gao, S., & Hu, Y. (Eds.). (2023). Handbook of geospatial artificial intelligence. Taylor & Francis. https://www.taylorfrancis.com/books/edit/10.1201/9781003308423/handbook-geospatial-artificial-intelligence-song-gao-yingjie-hu-wenwen-li

    Gao, S., Yao, X., & Hu, Y. (2023). Human-centered GeoAI foundation models: Where GeoAI meets human values. GeoInformatica, 27(1), 1–25. https://doi.org/10.1007/s10707-023-00493-6

    Gao, J., Peng, P., Lu, F., Claramunt, C., & Xu, Y. (2023). Towards travel recommendation interpretability: Disentangling tourist decision-making process via knowledge graph. Information Processing & Management, 60(4), 103369. https://doi.org/10.1016/j.ipm.2023.103369

    Gong, J., Liu, Y., & Zhang, H. (2018). CNN-based route planning for tourists using street view images. Computers,Environment and Urban Systems, 72, 1–11. https://doi.org/10.1016/j.compenvurbsys.2018.02.004

    Geospatial World. (2023). GeoAI and disaster management: Case studies from post-disaster tourism recovery. Geospatial World Journal, 31(4), 4–18. https://www.geospatialworld.net/article/geoai-and-disaster-management-case-studies/

    González, F. J., & Hernández, J. M. (2020). A methodological approach to monitor tourist flows using social media data. Sustainability, 12(3), 1147. https://doi.org/10.3390/su12031147

    Gong, P., Wang, J., Yu, L., Zhao, Y., & Liang, L. (2018). Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Urban Forestry & Urban Greening, 31, 1–10. https://doi.org/10.1016/j.ufug.2018.01.005

    González, L. A., & Hernández, D. (2020). Smart maps for sustainable tourism planning. Sustainability, 12(8), 3429. https://doi.org/10.3390/su12083429

    González, M., & Hernández, I. (2020). The use of tourist density maps in sustainable tourism planning. Journal of Sustainable Tourism, 28(3), 337–352.

    Geospatial World. (2023). Geospatial AI: A powerful tool in the fight against climate change. Retrieved May 8, 2025, from https://geospatialworld.net/blogs/geospatial-ai-a-powerful-tool-in-the-fight-against-climate-change

    Huang, Q., Li, Z., Fan, Z., & Hu, Y. (2022). Geospatial artificial intelligence for smart tourism: A comprehensive review. ISPRS International Journal of Geo-Information, 11(3), 156. https://doi.org/10.3390/ijgi11030156

    Jia, H., Wang, C., Zhang, Y., & Zhang, X. (2023). Urban tourism dynamics and social media: A GeoAI perspective on spatial-temporal patterns. Tourism Management, 95, 104689. https://doi.org/10.1016/j.tourman.2022.104689

    Jia, S. (Jasper), Chi, O. H., Martinez, S. D., & Lu, L. (2023). When “Old” Meets “New”: Unlocking the Future of Innovative Technology Implementation in Heritage Tourism. Journal of Hospitality & Tourism Research, 49(6), 640–665. https://doi.org/10.1177/10963480231205767

    Jia, P., Chi, G., Martinez, L., & Lu, Y. (2023). Exploring social media affordances in tourist destination image formation: A mixed-methods study. Tourism Management, 96, 104675. https://doi.org/10.1016/j.tourman.2023.104675

    Jia, T., Chi, G., Martinez, C. J., & Lu, Y. (2023). GeoAI applications in smart tourism: A review and future perspectives. Tourism Management Perspectives, 45, 101046. https://doi.org/10.1016/j.tmp.2023.101046

    Jia, Y., Wang, M., & Chen, H. (2023). GeoAI-powered monitoring for cultural heritage preservation. Heritage Science, 11(1), 75–91.

    Jiang, B., & Zhao, Y. (2020). GeoAI: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 623–645. https://doi.org/10.1080/13658816.2019.1707839

    Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. (2020). GeoAI: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 625–636. https://doi.org/10.1080/13658816.2019.1684500

    Kang, Y., Gao, S., & Roth, R. E. (2024). Artificial intelligence studies in cartography: A review and synthesis of methods, applications, and ethics. Cartography and Geographic Information Science, 51(4), 599–630. https://doi.org/10.1080/15230406.2023.2295943

    Kang, Y., Zhang, F., Gao, S., Lin, H., & Liu, Y. (2020). A review of urban physical environment sensing using street view imagery in public health studies. Annals of GIS, 26(3), 261–275. https://doi.org/10.1080/19475683.2020.1791954

    Kang, S. (2016). Associations between space–time constraints and spatial patterns of travels. Annals of Tourism Research, 61, 127–141. https://doi.org/10.1016/j.annals.2016.09.010

    Kang, Y., Gao, S., & Roth, R. E. (2024). Augmented Reality Maps and Geographic AI: Enhancing User Navigation and Experience. International Journal of Geographical Information Science, 38(2), 289–312.

    Liang, S., Jiao, T., Du, W., & Qu, S. (2021). An improved ant colony optimization algorithm based on context for tourism route planning. PLOS ONE, 16(9), e0257317. https://doi.org/10.1371/journal.pone.0257317

    Li, J., Liu, Z., & Zhang, L. (2024). Real-time route adaptation in tourism using GeoAI and IoT data. Journal of Geographic Information Science, 45(3), 213–227.

    Li, J., Liu, X., & Zhang, L. (2021). Predictive Analytics for Smart Tourism: A Real-Time Tour Routing Approach. Tourism Management, 85, 104314. https://doi.org/10.1016/j.tourman.2021.104314

    Li, J., Wang, L., & Huang, Z. (2024). Profiling Tourists Through Spatial AI: A Policy Perspective. Journal of Tourism Strategy, 6(2), 66–81.

    Li, W., Arundel, S. T., Gao, S., Goodchild, M. F., Hu, Y., Wang, S., & Zipf, A. (2024). GeoAI for science and the science of GeoAI. Journal of Spatial Information Science, (29), 349. https://doi.org/10.5311/JOSIS.2024.29.349

    Li, W., Goodchild, M. F., & Xu, B. (2024). Geospatial Artificial Intelligence: Progress and research opportunities. International Journal of Geographical Information Science, 38(2), 349–368.

    Li, X., Xie, S., & Li, J. (2024). GeoAI applications in smart tourism: Trends, tools, and implications. Journal of Geographical Systems, 26(1), 15–38.

    Li, X., Xie, S., & Li, J. (2024). GeoAI for tourism and sustainable management: A review of applications and future directions. Journal of Geographical Information Science, 38(1), 45–67. https://doi.org/10.1080/13658816.2024.1895234

    Li, Z., Liu, Y., & Zhang, Y. (2021). A smart tourism recommendation algorithm based on cellular geospatial clustering and multivariate weighted collaborative filtering. ISPRS International Journal of Geo-Information, 10(9), 628. https://doi.org/10.3390/ijgi10090628

    Liu, H., Yang, X., & Zhao, X. (2020). Dynamic routing for tourist flow optimization in smart destinations. Journal of Travel Research, 59(5), 877–892.

    Liu, Y., & Zhang, Y. (2021). GeoAI applications in tourism: Integrating social media data for destination management. Tourism Management, 83, 104234. https://doi.org/10.1016/j.tourman.2020.104234

    Liu, Y., Li, J., & Zhao, Z. (2019). Tourist flow management through GIS-based density maps. Tourism Management, 70, 343–356. https://doi.org/10.1016/j.tourman.2018.08.025

    Liu, Y., Li, Y., & Liu, Y. (2019). Detecting spatiotemporal patterns of urban tourists using multi-source big data. Computers, Environment and Urban Systems, 76, 101283.

    Liu, Z., Zhang, A., Yao, Y., Shi, W., Huang, X., & Shen, X. (2019). Detecting home countries of social media users with machine-learned ranking approach: A case study in Hong Kong. Applied Geography, 134, 102532. https://doi.org/10.1016/j.apgeog.2021.102532

    Liu, Z., Zhang, H., & Wang, Y. (2019). GeoAI for crowd monitoring and management in tourism hotspots. Computers, Environment and Urban Systems, 77, 101367. https://doi.org/10.1016/j.compenvurbsys.2019.101367

    Mestre Santos, T., Marinheiro, R. N., & Brito e Abreu, F. (2024). Wireless crowd detection for smart overtourism mitigation. arXiv preprint arXiv:2402.09158. https://arxiv.org/abs/2402.09158

    Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

    Ritchie, B. W. (2009). Crisis and disaster management for tourism. Channel View Publications.

    Sahoo, N. R. (2023, 30 Ocak). GeoAI in crop analytics and sustainable agriculture. Cyient. https://www.cyient.com/blog/geoai-in-crop-analytics-and-sustainable-agriculture

    Sojahrood, Z. B., & Taleai, M. (2021). A POI group recommendation method in location-based social networks based on user influence. Expert Systems with Applications, 171, 114593. https://doi.org/10.1016/j.eswa.2021.114593

    Tian, Z., Liu, Y., Wang, Y., & Wu, L. (2022). A tourist behavior analysis framework guided by geo-information tupu theory and its application in Dengfeng City, China. ISPRS International Journal of Geo-Information, 11(4), 250. https://doi.org/10.3390/ijgi11040250

    Wu, Q., Guan, Y., & Ma, J. (2017). Genetic algorithm-based multi-objective travel route optimization in smart tourism. Journal of Advanced Transportation, 2017, Article ID 2930816.

    Wu, X., Guan, H., & Ma, J. (2017). A tour route planning model for tourism experience utility maximization. SAGE Open, 7(2), 2158244017732309. https://doi.org/10.1177/1687814017732309

    Wang, S., Huang, X., Liu, P., Zhang, M., Biljecki, F., Hu, T., Fu, X., Liu, L., Liu, X., Wang, R., Huang, Y., Yan, J., Jiang, J., Chukwu, M., Reza Naghedi, S., Hemmati, M., Shao, Y., Jia, N., Xiao, Z., ...Bao, S. (2024). Mapping the landscape and roadmap of geospatial artificial intelligence (GeoAI) in quantitative human geography: An extensive systematic review. International Journal of Applied Earth Observation and Geoinformation, 128, 103734. https://doi.org/10.1016/j.jag.2024.103734

    Xu, A., Zeng, W., & Xu, P. (2022). Dynamic optimization modeling of smart tourism information system using VRGIS in big data environment. Computational Intelligence and Neuroscience, 2022, Article 7914674. https://doi.org/10.1155/2022/7914674

    Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51–65. https://doi.org/10.1016/j.tourman.2016.10.019

    Yan, L. (2022). Improved on-demand travel route planning model with interest fields. PubMed Central (PMC). https://pubmed.ncbi.nlm.nih.gov/35983138/

    Yao, Y., Guo, Z., Dou, C., Jia, M., Hong, Y., Guan, Q., & Luo, P. (2023). Predicting mobile users’ next location using the semantically enriched geo-embedding model and the multilayer attention mechanism. Computers, Environment and Urban Systems, 104, 102009. https://doi.org/10.1016/j.compenvurbsys.2023.102009

    Yun, H. J., & Park, M. H. (2015). Time–space movement of festival visitors in rural areas using a smartphone application. Asia Pacific Journal of Tourism Research, 20(11), 1246–1265. https://doi.org/10.1080/10941665.2014.976581

    Zhang, Y., & Xie, K. L. (2020). Detecting tourist attractions from online photos using geotagged social media data and deep learning. Tourism Management, 80, 104110. https://doi.org/10.1016/j.tourman.2020.104110

    Zhang, Z., Zou, L., Li, W., Usery, L., Albrecht, J., & Armstrong, M. (2021). Cyber‑infrastructure and intelligent spatial decision support systems. Transactions in GIS, 25(4), 1651–1653. https://doi.org/10.1111/tgis.12830

    Zhao, X., Lu, X., Liu, Y., Lin, J., & An, J. (2018). Tourist movement patterns understanding from the perspective of travel party size using mobile tracking data: A case study of Xi’an, China. Tourism Management, 69, 368–383. https://doi.org/10.1016/j.tourman.2018.06.016

    Zhang, Y., Xie, K. L., & Morrison, A. M. (2021). GeoAI in tourism: Mapping and analyzing tourist movement using artificial intelligence. Annals of Tourism Research, 89, 103221. https://doi.org/10.1016/j.annals.2021.103221

    Zhang, Y., & Xie, L. (2020). Integrating GeoAI and social media data for urban social sensing. ISPRS International Journal of Geo-Information, 9(12), 741. https://doi.org/10.3390/ijgi9120741

    Zhang, Y., Wang, Z., Yong, Z., Xu, P., Wang, Q., & Du, X. (2021). The spatiotemporal pattern evolution and driving force of tourism information flow in the Chengdu–Chongqing city cluster. ISPRS International Journal of Geo-Information, 12(10), 414. https://doi.org/10.3390/ijgi12100414

    Zhang, Y., Tang, Z., & Zhang, Y. (2021). Cross-modal travel route recommendation algorithm based on Internet of Things awareness. Journal of Sensors, 2021, Article 5981385. https://doi.org/10.1155/2021/5981385

    Zhang, L., & Xie, H. (2020). Predictive GeoAI in popular culture tourism: A case study of Dubrovnik. Journal of Smart Tourism, 6(2), 112–129.

    Zhang, L., & Xie, H. (2020). GeoAI applications in tourism economics. Journal of Smart Tourism Analytics, 5(3), 110–128.

    Zhao, H., Lin, Q., & Wang, M. (2018). Infrastructure evaluation via GeoAI in tourism. Economic Geography Review, 12(4), 101–115.

    Zheng, W., Huang, X., & Li, Y. (2017). Understanding tourist mobility using GPS: Where is the next place? Tourism Management, 59, 267–280. https://doi.org/10.1016/j.tourman.2016.08.012

    Zhu, X., Li, Y., & Wang, Z. (2022). Smart tourism and sustainable development: A review and future research directions. Sustainable Cities and Society, 64, 102525. https://doi.org/10.1016/j.scs.2020.102525